Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e55233, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36194667

RESUMO

The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.


Assuntos
NF-kappa B , Humanos , Animais , Camundongos
2.
Arthritis Rheumatol ; 71(12): 2005-2015, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31259485

RESUMO

OBJECTIVE: Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT-1) plays a crucial role in innate and adaptive immune signaling by modulating the threshold for activation of immune cells, including Treg cells. Therefore, MALT-1 is regarded to be an interesting therapeutic target in several immune-mediated diseases. The goal of this study was to examine the role of MALT-1 in experimental animal models of rheumatoid arthritis (RA). METHODS: MALT-1 activation was assessed by measuring cleavage of the deubiquitinase CYLD in lymphocytes from mice with collagen-induced arthritis (CIA). Furthermore, the impact of MALT-1 deficiency on arthritis was evaluated in Malt1KO mice with CIA or with collagen antibody-induced arthritis (CAIA). T cell-specific MALT-1 deficiency was measured in mice with deletion of T cell-specific MALT-1 (Malt1Tcell KO ), and the time-dependent effects of MALT-1 deficiency were assessed in mice with deletion of tamoxifen-inducible T cell-specific MALT-1 (Malt1iTcell KO ). Bone density was determined in MALT-1-deficient mice using micro-computed tomography and femur-bending tests. Reconstitution of Treg cells was performed using adoptive transfer experiments. RESULTS: MALT-1 activation was observed in the lymphocytes of mice with CIA. T cell-specific MALT-1 deletion in the induction phase of arthritis (incidence of arthritis, 25% in control mice versus 0% in Malt1iTcell KO mice; P < 0.05), but not in the effector phase of arthritis, completely protected mice against the development of CIA. Consistent with this finding, MALT-1 deficiency had no impact on CAIA, an effector phase model of RA. Finally, mice with MALT-1 deficiency showed a spontaneous decrease in bone density (mean ± SEM trabecular thickness, 46.3 ± 0.7 µm in control mice versus 40 ± 1.1 µm in Malt1KO mice; P < 0.001), which was linked to the loss of Treg cells in these mice. CONCLUSION: Overall, these data in murine models of RA highlight MALT-1 as a master regulator of T cell activation, which is relevant to the pathogenesis of autoimmune arthritis. Furthermore, these findings show that MALT-1 deficiency can lead to spontaneous osteoporosis, which is associated with impaired Treg cell numbers.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Osteoporose/genética , Deleção de Sequência/imunologia , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Ativação Linfocitária/genética , Camundongos , Osteoporose/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia
3.
Nat Commun ; 9(1): 4613, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397205

RESUMO

Many pro-inflammatory pathways leading to arthritis have global effects on the immune system rather than only acting locally in joints. The reason behind the regional and patchy distribution of arthritis represents a longstanding paradox. Here we show that biomechanical loading acts as a decisive factor in the transition from systemic autoimmunity to joint inflammation. Distribution of inflammation and erosive disease is confined to mechano-sensitive regions with a unique microanatomy. Curiously, this pathway relies on stromal cells but not adaptive immunity. Mechano-stimulation of mesenchymal cells induces CXCL1 and CCL2 for the recruitment of classical monocytes, which can differentiate into bone-resorbing osteoclasts. Genetic ablation of CCL2 or pharmacologic targeting of its receptor CCR2 abates mechanically-induced exacerbation of arthritis, indicating that stress-induced chemokine release by mesenchymal cells and chemo-attraction of monocytes determines preferential homing of arthritis to certain hot spots. Thus, mechanical strain controls the site-specific localisation of inflammation and tissue damage in arthritis.


Assuntos
Artrite/metabolismo , Artrite/patologia , Inflamação/metabolismo , Adulto , Animais , Artrite/diagnóstico por imagem , Artrite/genética , Autoanticorpos/metabolismo , Autoimunidade , Reabsorção Óssea/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos , Osteoclastos/metabolismo , Receptores CCR2/efeitos dos fármacos , Células Estromais , Ossos do Tarso/diagnóstico por imagem , Ossos do Tarso/patologia , Tendinopatia/patologia , Tendões/metabolismo , Microtomografia por Raio-X
4.
Environ Pollut ; 208(Pt B): 747-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26561450

RESUMO

Underwater sound generated by pile driving during construction of offshore wind farms is a major concern in many countries. This paper reports on the acoustic stress responses in young European sea bass Dicentrarchus labrax (68 and 115 days old), based on four in situ experiments as close as 45 m from a pile driving activity. As a primary stress response, whole-body cortisol seemed to be too sensitive to 'handling' bias. On the other hand, measured secondary stress responses to pile driving showed significant reductions in oxygen consumption rate and low whole-body lactate concentrations. Furthermore, repeated exposure to impulsive sound significantly affected both primary and secondary stress responses. Under laboratory conditions, no tertiary stress responses (no changes in specific growth rate or Fulton's condition factor) were noted in young sea bass 30 days after the treatment. Still, the demonstrated acute stress responses and potentially repeated exposure to impulsive sound in the field will inevitably lead to less fit fish in the wild.


Assuntos
Bass/fisiologia , Ruído , Estresse Fisiológico , Estimulação Acústica , Animais , Bass/metabolismo , Exposição Ambiental/análise , Hidrocortisona/metabolismo , Ácido Láctico/metabolismo , Consumo de Oxigênio
5.
J Mater Sci Mater Med ; 26(10): 247, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26411443

RESUMO

The present work describes for the first time the production of self-supporting low gelatin density (<10 w/v%) porous scaffolds using methacrylamide-modified gelatin as an extracellular matrix mimicking component. As porous scaffolds starting from low gelatin concentrations cannot be realized with the conventional additive manufacturing techniques in the abscence of additives, we applied an indirect fused deposition modelling approach. To realize this, we have printed a sacrificial polyester scaffold which supported the hydrogel material during UV crosslinking, thereby preventing hydrogel structure collapse. After complete curing, the polyester scaffold was selectively dissolved leaving behind a porous, interconnective low density gelatin scaffold. Scaffold structural analysis indicated the success of the selected indirect additive manufacturing approach. Physico-chemical testing revealed scaffold properties (mechanical, degradation, swelling) to depend on the applied gelatin concentration and methacrylamide content. Preliminary biocompatibility studies revealed the cell-interactive and biocompatible properties of the materials developed.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Alicerces Teciduais/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Linhagem Celular , Fibroblastos/citologia , Humanos , Hidrogéis , Teste de Materiais , Porosidade , Reologia , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...